Design Methodology of a Dual-Halbach Array Linear Actuator with Thermal-Electromagnetic Coupling
نویسندگان
چکیده
This paper proposes a design methodology for linear actuators, considering thermal and electromagnetic coupling with geometrical and temperature constraints, that maximizes force density and minimizes force ripple. The method allows defining an actuator for given specifications in a step-by-step way so that requirements are met and the temperature within the device is maintained under or equal to its maximum allowed for continuous operation. According to the proposed method, the electromagnetic and thermal models are built with quasi-static parametric finite element models. The methodology was successfully applied to the design of a linear cylindrical actuator with a dual quasi-Halbach array of permanent magnets and a moving-coil. The actuator can produce an axial force of 120 N and a stroke of 80 mm. The paper also presents a comparative analysis between results obtained considering only an electromagnetic model and the thermal-electromagnetic coupled model. This comparison shows that the final designs for both cases differ significantly, especially regarding its active volume and its electrical and magnetic loading. Although in this paper the methodology was employed to design a specific actuator, its structure can be used to design a wide range of linear devices if the parametric models are adjusted for each particular actuator.
منابع مشابه
Comparison between Radial and Halbach Array PMLSM by Employing 2-D Electromagnetic Finite Element Analysis
The replacement of steam catapults with electromagnetic ones is becoming an overwhelming trend in aircraft launch systems. The Electromagnetic Aircraft Launch System (EMALS) offers significant benefits to the aircraft, ship, personnel, and operational capabilities. EMALS has such advantages as high thrust, good controllability, reusable, etc., as a launching motor, a double-side plate Permanent...
متن کاملA tubular linear machine with dual Halbach array
Purpose – Force output is extremely important for electromagnetic linear machines. The purpose of this study is to explore new permanent magnet (PM) array and winding patterns to increase the magnetic flux density and thus to improve the force output of electromagnetic tubular linear machines. Design/methodology/approach – Based on investigations on various PM patterns, a novel dual Halbach PM ...
متن کاملMagnetic Field of Tubular Linear Machines with Dual Halbach Array
Permanent magnet (PM) array affects flux field distribution of electromagnetic linear machines significantly. A novel dual Halbach array is proposed in this paper to enhance flux density in air gap, and thus to improve output performance of linear machines. Magnetic field in three-dimensional (3D) space of a tubular linear machine with dual Halbach array is formulated based on Laplace’s and Poi...
متن کاملDesign and Simulation of a Moving-magnet-type Linear Synchronous Motor for Electromagnetic Launch System
The Electromagnetic Aircraft Launch System (EMALS) offers significant benefits to the aircraft, ship, personnel, and operational capabilities. EMALS has such advantages as high thrust, good controllability, reusable, etc., as a launching motor, a double-side plate Permanent Magnet Linear Synchronous Motor (PMLSM) can provide high instantaneous thrust. This paper presents the design and analysis...
متن کاملDesign of a Tubular Permanent Magnet Actuator for Active Lateral Secondary Suspension of a Railway Vehicle
This paper describes the finite element (FE)-based design of a slotted tubular permanent magnet actuator (TPMA) used in railway vehicle active lateral secondary suspension that improves the actuator’s thrust and lowers its cogging force under thermal and geometric constraints. To consider the electromagnetic and thermal fields and the complex interactions among the design variables, design was ...
متن کامل